DUHAMEL SOLUTIONS OF NON-HOMOGENEOUS q-ANALOGUE WAVE EQUATIONS
نویسنده
چکیده
q-analogue non-homogeneous wave equations are solved by a Duhamel solution strategy using constructions with q-analogue Fourier multipliers to compensate for the dependence of the analogue differential Leibnitz rule on the parity of the functions involved.
منابع مشابه
Solitary Wave solutions to the (3+1)-dimensional Jimbo Miwa equation
The homogeneous balance method can be used to construct exact traveling wave solutions of nonlinear partial differential equations. In this paper, this method is used to construct new soliton solutions of the (3+1) Jimbo--Miwa equation.
متن کاملSome new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملNew study to construct new solitary wave solutions for generalized sinh- Gordon equation
In this work, we successfully construct the new exact traveling wave solutions of the generalized Sinh–Gordon equation by new application of the homogeneous balance method. The idea introduced in this paper can be applied to other nonlinear evolution equations.
متن کاملThe extended homogeneous balance method and exact solutions of the Maccari system
The extended homogeneous balance method is used to construct exact traveling wave solutions of the Maccari system, in which the homogeneous balance method is applied to solve the Riccati equation and the reduced nonlinear ordinary differential equation. Many exact traveling wave solutions of the Maccari system equation are successfully obtained.
متن کاملNon-existence of Small-amplitude Doubly Periodic Waves for Dispersive Equations
We formulate the question of existence of spatially periodic, time-periodic solutions for evolution equations as a fixed point problem, for certain temporal periods. We prove that if a certain estimate applies for the Duhamel integral, then time-periodic solutions cannot be arbitrarily small. This provides a partial analogue in the spatially periodic case of scattering results for dispersive eq...
متن کامل